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VORTICAL FLOWS AND CANONICAL EQUATIONS OF MOTION OF A MAGNETIZABLE, 
PERFECTLY CONDUCTING FLUID* 

V.B. GORSKII 

The classical Kelvin's circulation theorem and Helmholtz theory on the 
motion of vortex lines with the fluid and conservation of the strength 
of vortex tubes are generalized to the case of the vertical adiabatic flows 
of a magnetizable, perfectly conducting fluid. Canonical variables are 
found and canonical Hamiltonian equations of motion are obtained. 

1. The equation of motion of the fluid in question has the form**(**Golosov V.V., 
Vasil'eva N.L., Taktarov N.G. and Shaposhnikova G.A. Hydrodynamic equations for polarizable, 
magnetizable, multicomponent and multiphase media. Discontinuous solutions. Study of 
discontinuous solutions with a jump in magnetic permeability. Moscow, Izd-vo MGU, 1975) 

dv 
P~=---Pf~ Bk VH,+[jx$]; 

p=po+~lS[p-_p($)~,H]BdH 
0 

(1.1) 

where j is the electric current 
temperature, PO is the pressure 
remaining notation is standard. 
magnetizable medium 

density, B = p (p, T, If) H is the magnetic induction, T is the 
of the normal fluid without the magnetic field, and the 
We will use below the Gibbs thermodynamic identities for a 

dU=IdS+$dp+Hd+, dlY = T dS -t %+Hd+y= 

~=u~+~{H.,S[T(~,,,~-~]EdH 

G.2) 

Here U,W,S denote, respectively, the internal energy, enthalpy and entropy per unit 
mass of the fluid, and the zero subscripts denote the parameters without a magnetic field. 

Using relations (1.2) we can write (1.1) in the form 
, 
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-$-[vxrotv]ddS-V(;+W--)++[jxB] 
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(1.3) 

Let us take the curl of (1.3), remembering that j =‘(d4n) rot H. Introducing now the operator 
Helm o z doldt - (oV) v + o div Y, e=rotv, we can reduce the result to the form 

Helm" = VT x VS - rot 
[ 

B 
4np xrotH 1 ,(1.4) 

According to Friedman's theorem /l/ the necessary and sufficient condition for the 
Helmholtz theorems on the motion of vortex lines with the fluid and conservation of the strength 
of vortex tubes to be satisfied is the condition Helmo=O, i.e. according to (1.4), the 
condition 

1 (1.5) 

On the other hand, we know that the rate of change of the circulation r of the velocity 
vector v over a closed contour C,moving together with the fluid, is equal to /2/ 

where dr is the element of the tangent to C and ,J denotes the surface bounded by the contour 
c. Substituting into it the expression Helme from (1.4) we find, that in order to preserve 
the circulation of velocity over the closed contour (Kelvin's theorem) when the fluid is in 
continuous motion, condition (1.5) is necessary and sufficient, just as in the Helmholtz 
theorems. In the special case of ideal magnetohydrodynamics we obtain from (1.5), when p= 
coast = 1, the. well-known analogous condition /3/. 

Condition (1.5) represents a very strong constraint. We can also show herethatageneralized 
vorticity exists for the medium for which the vorticity theorems considered here hold without 
the strict condition (1.5). We will show this blow, using the variational formulation of the 
problem. 

2. The variational formulation of the problem concerning the motions in question of the 
magnetizable conducting fluid, was givenin /4/. Let us modify it slightly. 

We take the density 2 of the Lagrangian in the form 

I-q-pU+cp 
( 
$! +divpv 

)( ) 
--OL $-+r.VS - 

p($+v.V,a)+ydivB+b[$-rot(vx B)] 

where a is an arbitrary Lagrangian coordinate of the fluid particle and 'q,a,fi.v,b are the 
Lagrange multipliers. Carrying out the identity transformation and neglecting the divergent 
terms and terms containing the partial time derivatives, we obtain 

(2.1) 

Taking the variational derivatives in I, over the free functions v,p,S,o,B/(4np) and 
equating them to zero, we obtain the conditions of stationarity, which represent the Lagrangian 
equations of motion 

$vn+ +xrotb 
3 

ah 
--0 ap- ’ 

-&w_~+~=o 

(2.2) 

(2.3) 

_&o, $(T)=T (2.4) 

_$=o, -$(%)=O (2.5) 

*=o, ;=[Vxrotb]-($+VY) (2.6) 

It can be shown that we can reduce the equations (2.2)-(2.6) to the equations of motion 
(1.1) by eliminating the Lagrange multipliers (~,e,fi,v,b. 

Let us now introduce, with help of the generalized Klebsch transformation (2.2), the 
generalized velocity o and vorticity Q 
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u=v--$fS- pxrotb 52 = rtlt u (2.7, 

Using (2.71, the induction equation in the form d(B/p)/dt=(p)-lBv.,~)v and the vector identity 
for three arbitrary vectors a,,aB,as 

al X rot (aa x as) f a2 x rot (as x aI) + a3 x rot (al X a,) = 
grad {al [a2 x a3]) + (a, x a*) div as-i_ (a2 X a*) div a1 + (as X al) div 8~ 

we reduce the equations of motion (1.1) to the quasibarotropic form 

(2.8) 

Taking the curl of (2.8), we obtain HelmR= 0. This means that the Kelvin and Belmholtz 
theorems considered here hold for the generalized vorticity Q without the strict condition 
(1.5). The same result was obtained in standard hydrodynamics by a different method in /5, 6, 

7/. 

3. Let us find the canonical Hamiltonian equations of motion of a magnetizable, perfectly 
conducting compressible fluid. To do this we transform El (2.1) thus 

Using (2.2) here and neglecting terms containing time derivatives and the divergent term, 
we arrive at the expression 

This yields the densities of generalized impulses determined by the formula sk== ayap,', 
where qk= ~.a, 8, B. Thus we obtain 

The density h of the Hamiltonian if given by the formula 

h= 
Iz 

,n,~--Ir_~(~V~+tVS+~~~+Bx~*tb)'-i-PU 

i.e. it is the total energy density of the fluid. 
According to classical theory /8/ the canonical equations of motion of a continuum are 

given in the form aqk/at = 6h/6nk, anklat = -6h/6gk. Therefore we obtain the following canonical 
equations for the fluid in question: 

_& 6h 
at w-&z-div(pv), ~=-,=$-_v.ocp-SY+$$ 
aa I% 8.9 Bh 
x-=- bs =pT - dir(w), ~=....-&=_'.VS 

43.3) 

(3.4) 

We see that (3.1) corresponds to the equation of continuity and Eq.(2.3), which is in 
fact the Lagrange-Cauchy integral. Eqs.(3.2) are equivalent to (2.4) and the condition of 
adiabaticity (3.3) corresponds to (2.5) and condition of conservation of the Lagrangian 
coordinate of the fluid particle. Finally, (3.4) are equivalent to the induction equation 
and (2.6). 

We note that in order to find the variational derivatives 6~/&,St&B, we write h in the 
form h= v (pVrp+aaVS+&Va+B X rotb)-p&2+pU. Moreover, when calculating 6h/6B, we add to h 
the zero term (--ydivB) and the divergent term &v&B), which is allowed. 

The resulting Hamiltonian formalism is useful for the fluid in question in many ways. 
The introduction of canonical variables makes it possible to establish certain general rules 
governing the wave interpction in non-linear media, to derive truncated equations describing, 
with various degrees of approximation, simplified models of non-linear media, and pass in a 
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natural manner to the relativistic and quantum theory generalizations /8/. In addition, the 

canonical Hamiltonian formulation of hydrodynamic problems is found to be convenient in the 
case of numerical calculations /9/. 
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SLOW MOTION CF A PARTICLE IN A WEAKLY ANISOTROPIC VISCOUS FLUID* 

V.N. POKROVSKII and A.A. TSKHAI 

The problem of the steady flow past a rigid sphere of a linear, homogeneous 
weaklyanisotropicviscous incompressible fluid is studied in the Stokes 
approximation. The solution is sought using the perturbation method and 
has the form of an expansion in particular solutions of the Laplace equation 
in Cartesian coordinates. Expressions for the velocity and pressure 
fields in the fluid are obtained, as well as for the force acting on the 
particle. 

When studying certain systems such as liquid crystals, we encounter the problem of 
determining the coefficients of resistance when a particle is in translational and rotational 
motion through an anisotropic fluid. The simplest case of such a fluid is a linear, homogeneous, 
viscous anisotropic liquid defines by the equation (see e.g. /l/) 

"ij =- fiij + Ilijhq'q'h (') 

(%jm= ?j*hq = I)ijqh= tlhpij' 'p = 'la+,) 

where eij is the stress tensor, p is the pressure, vk is the velocity and qijap is the tensor 
of viscosity coefficients with the idicated symmetry properties. 

We can separate from the tensor of viscosity coefficients lijhq a part corresponding to 
an isotropic fluid with viscosity coefficient q 

'lijhq =(1 C6ihbjp + 'iq'jh) + Sij** (2) 

Henceforth we shall regard the anisotropic term &ijha as small, and this will make it 
possible to express the particle resistance coefficients in the form of an expansion in terms 
of the small parameter Eijh,,, We will restrict ourselves to determining the first-order 
correction to the resistance coefficient of a spherical particle in translational motion. 
*Pril~l.Matem.I4ekhan.,50,3,512-515,1986 


